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In conventional continuum mechanics, the surface energy is usually small and negligible. But at nano-
length scale, it becomes a significant part of the total elastic energy due to the high specific surface area
of nanomaterials. A geometrically nonlinear finite element (FE) model of nanomaterials with considering
surface effects is developed in this paper. The aim is to extend the conventional finite element method
(FEM) to analyze the size-dependent mechanical properties of nanomaterials. A numerical example,
analysis of InAs quantum dot (QD) on GaAs (001) substrate, is given in this paper to verify the validity
of the method and demonstrate surface effects on the stress fields of QDs.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The numerical simulation models of materials in mechanics
mainly include the continuum models and the atomic-scale models.
The latter ones, such as molecular dynamics, Monte Carlo methods,
lattice dynamics and etc., have aroused general interest in nanome-
chanics research. However, these computation methods are rather
expensive and time-consuming due to the limited computational
power of current available devices, which hinders the application of
atomic-scale simulation to some complex problems, such as analy-
sis of nano-electromechanical system (NEMS). On the other hand,
the conventional finite element method (FEM) is not applicable to
nano-scale problems. Although some works [1–3] have been done
to extend FEM to nanomaterials research recently, the theory stud-
ies are far from enough and they are all built in small deformation
context. Surface deformation of nanomaterials is a geometrically
nonlinear problem by nature, so the theory framework shall be built
in the context of finite deformation. In this work, a geometrically
finite element (FE) model of nanomaterials with considering surface
effects is developed. Analysis of InAs quantum dot (QD) on GaAs
(001) substrate is given in this paper to verify the validity of the
method and demonstrate the surface effects on the stress fields
of QDs.
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The quantum effects, surface effects and size effects of nanoma-
terials have become very hot topics nowadays [4–9]. Nanomaterials
show up interesting size-dependent elastic properties because of the
intrinsic surface effects, or alternatively, the surface energy. Due to
undercoordination, the atoms at the surface have extra energy, i.e.
the source of surface energy, than those in the bulk. Because nano-
materials have high specific surface area, the surface energy becomes
a significant part of the total elastic potential energy, which is the
sum of the volume elastic strain energy and the surface energy.

In 1928, Gibbs defined the Eulerian form of surface free energy
density � as the reversible work involved in creating a unit area of
new surface at constant temperature, volume and chemical potential.
In terms of the current configuration, the Eulerian form of surface
stress �S

�� is related to � via [10]

��� = 1
A

�(A�)
��S��

= ���� + ��
��S��

, (�, � = 1, 2), (1)

where A is the deformed surface area, �S�� is the Lagrange surface

strain, and ��� is the kronecker delta symbol. Similar to Eq. (1), �S
��

may also be written as [11]

�S
�� = �0

�� + S�����
S
��, (�, �, �, � = 1, 2), (2)

where �0
�� denotes the surface stress at zero strain, and S���� is the

fourth order surface elastic tensor which determines the change
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in the surface stress with strain. The value can be determined from
atomistic calculations [12,13].

In terms of the referential configuration, the Lagrange form of
surface stress �S

�� is related to 	 via

�S
�� = 1

A0

d(A0	)
d�S��

= d	
d�S��

, (�, � = 1, 2), (3)

where 	 is the Lagrange form of the surface free energy density, �S
��

the second Piola–Kirchhoff surface stress tensor which decides the
dependence of 	 on surface strain, A0 the undeformed surface area,
and A = A0(1 + �S

). According to Dingreville et al. [14], the surface
free energy density 	 may be written as a Taylor series expansion
about the Lagrange surface strain. In this paper, 	 is assumed to be
linear in �S��, i.e. 	=	0+�0

���
S
��. For two-dimensional (2D) problem,

it is reduced into 	 = 	0 +R0�.
Need to mention, in the above the surface energy and the surface

effect are defined as macroscopic thermodynamic quantities. That
is valid on the assumption: the bulk volume is much larger than
several atomic sizes. At the early stage of our study, 2D models are
reported in this paper and 2D axi-symmetric model is used to model
QD island shape in reality. It is feasible because former FEM results
show 2Dmodel gives satisfactory results [15,16]. Further insight into
3D model shall be performed in future.

2. A FE model of nanomaterials built on the basis of nonlinear
kinematics

2.1. Overview of finite deformation theory

According to finite deformation theory, we introduce Lagrange
frame and Eulerian frame to describe, respectively, the fixed refer-
ence configuration and the current configuration.

Describe a typical material point position by vector X and x, re-
spectively, in Lagrange frame and Eulerian frame. The relationship
between X and x is given as x = X + U, where U is the Lagrange
displacement; or alternatively, X = x − u, where u is the Eulerian
displacement.

Vector X is mapped to x by the deformation gradient F, i.e. F =
�x/�X. The determinant of the deformation gradient is J = detF; the
left-deformation tensor is B=FFT; and the right-deformation tensor
is C = FTF.

The components of the Green strain E defined in reference con-
figuration are related to the deformation gradient tensor through
EIJ = 1

2 (CIJ − �IJ); the components of the Almansi strain e are eij =
1
2 (�ij − B−1

ij ).
The second Kirchhoff stress S and the Cauchy stress r are stress

measures defined with respect to the reference configuration and the
current configuration, respectively. The Cauchy stress r is the true
stress in the current configuration, defined as r=dT/ds, where dT is
the force acting on the deformed area ds. The second Kirchhoff stress
S is defined as S= dTK/dS0, where dTK = F−1 dT, and dS0 = (1/J)FT ds.
In component form, S is related to r through SIJ = JF−1

Im F−1
Jn �mn.

2.2. FE formulation

2.2.1. 2D plane problem
Consider 2D plane problems of an elastic body which occupies

referential configuration B and surface area B̂i. After deformation,
B is mapped into b, and surface B̂i is mapped into b̂i. The sur-
face deformation can be described by surface stretch ratio � [6],
defined by

� = dl/dL, where L and l are the arc lengths along B̂i and b̂i,
respectively.

Assume the surface energy density is linear in �, i.e.

	(�) = �0 + �0� = 	0 + �0�, (4)

where � is the surface strain, � = � − 1, and 	0 = �0 + �0.
The total potential energy � may be written as

� = Ue + Us − V , (5)

where Ue is the volume elastic strain energy, Us the surface free
energy, V the work done by all external forces acting on the body
and its stress boundary B̂0. They are given as follows:

Ue =
∫
B
W dA =

∫
B

1
2EIJSIJ dA, (6a)

Us =
∫
B̂i

	dL, (6b)

V =
∫
B
UTPdA +

∫
B̂0

UTT dL. (6c)

According to the minimum potential energy theory, the variation of
functional � vanishes, i.e.

�� =
∫
B
�EIJSIJ dA +

∫
B̂i

�0��dL −
∫
B
�UIPI dA

−
∫
B̂0

�UITI dL = 0. (7)

Based on the definition of surface stretch ratio, we have �2 = dxi ·
dxi/(dL)

2. The variation of �2 may be written as

��� = dxi
dL

�dxi
dL

= dxi
dL

d
dL

�Ui. (8)

In view of �x = �u = �U, it yields

�� = 1
�

dxi
dL

d
dL

�Ui =
1
�

d
dL

�uT dx
dL

. (9)

Eq. (7) is a nonlinear equation, so it needs to be linearized in the
reference configuration. Assume that 
 = ��, and an incremental
displacement vector �u is given. Using ��u = 0, the incremental
form of 
 may be written as

�
 =
∫
B
�(�EIJ)SIJ dA +

∫
B
�EIJ�SIJ dA +

∫
�
Bi

�0�(��), (10)

where

�EIJ = �
(
1
2
FkIFkJ

)
= �xk ��uk

�XI �XJ
.

In view of SIJ = JF−1
Im F−1

Jn �mn and J dA = da, the first term in Eq. (10)
may be written as

∫
B
�(�EIJ)SIJ dA =

∫
B

��uk ��uk
�XI �XJ

SIJ dA =
∫
b

��uk��uk
�xm�xn

�mn da. (11)

Note that �FiJ =��ui/�xk �xk/�XJ , thus we have �F=∇(�u)F. It follows
that

�E = �( 12F
TF) = 1

2 [F
T∇(�uT)F + FT∇(�u)F] = FTdfF, (12)

where � = 1
2 [∇(u)T + ∇(u)].

For the purpose of linearization, �S=JF−1�rF−T is approximately
given. Using �S=D0�E, we have �r=D��, where D0 and D denote
the material moduli in the reference configuration and the current
configuration, respectively, and JD = FFD0FTFT.
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Consequently, the second term in Eq. (10) may be written as∫
B
�EIJ�SIJ dA =

∫
B

1
2 FkI(�uk,l + �ul,k)FlJJF

−1
Ik ��klF

−1
Jl dA

=
∫
b
��kl��kl da. (13)

Using FEM theory [17], divide the region into elements in current
configuration. According to the isoparametric concept, the FE ap-
proximations for displacements and coordinates in an element are
given by

u =
n∑

I=1

NI(�)ue
I , (14a)

x =
n∑

I=1

NI(�)xeI , (14b)

where NI is the shape function at node I, � natural coordinates for
the element, uI

e the displacement vector at node I , and xIe the
coordinate vector at node I.

Using the Vigot notation, r and �f in 2D plane problem are given
by

r= [�11 �22 �12]
T, (15)

�f= [��11 ��22 ��12]
T. (16)

So it follows that

�f= BI�uI, (17)

where

BI =
⎡
⎣NI,1 0

0 NI,2
NI,2 NI,1

⎤
⎦ , NI,1 = �NI

�x1
.

Apply Eqs. (15) and (16) into Eq. (10), and use Eqs. (14a) and (14b)
for discretization. Leaving out �d (d is the displacement vector of all
the body nodes, i.e. d = ∑

eu
e), we have �
 = KT�d. Define KT as

the stiffness matrix, written as

KT =
∑
e

[∫
be

dNT

dx
r
dN
dx

da +
∫
be
BTDBda +

∫
b̂ei

�0
dNT

dl
dN
dl

dl

−
∫
b̂ei

�0
dNT

dl
dx
dl

dxT

dl
dN
dl

dl

]
, (18)

where B = [B1 · · · BI · · · Bn], N = [N1 · · · NI · · · Nn], and NI =[
NI 0
0 NI

]
.

Accordingly, Eq. (18) may also be expressed as

KT = Km + Kg + Ks, (19)

where Km, Kg and Ks are the material tangent matrix, the geometric
stiffness matrix and the surface stiffness matrix, respectively. They
are given as follows:

(Km)IJ =
∑
e

[∫
be
BT
I DBJ da

]
, (20a)

(Kg
ij)IJ =

∑
e

[∫
be

�NI

�xm
�mn

�NJ

�xn
da�ij

]
, (20b)

(Ks
ij)IJ =

∑
e

[∫
b̂ei

�0
dNI

dl
dNJ

dl
dl�ij−

∫
b̂ei

�0
dNI

dl
dxi
dl

dxj
dl

dNJ

dl
dl

]
. (20c)

Leaving out �d, we can get the Eulerian form of 
 as

∑
e

[∫
be
BTrda+

∫
b̂ei

�0
dNT

dl
dx
dl

dl−
∫
be
NTpda−

∫
b̂e0

NTtdl

]
= 0, (21)

where p and t is Eulerian form of P and T.
Define the resultant force R as

R=
∑
e

[∫
be
NTpda+

∫
b̂e0

NTtdl−
∫
be
BTrda−

∫
b̂ei

�0
dNT

dl
dx
dl

dl

]
. (22)

Finally, the Newton algorithm for nonlinear equations is given by

(1) Initialize d0 = 0.
(2) Loop over steps, k

KT(dk)�dk = R(dk), (23a)

dk+1 = dk + �dk. (23b)

(3) Repeat step 2 until R is small enough to be almost zero.

2.2.2. 2D axi-symmetric problem
For 2D axi-symmetric problem, the displacements depend only

on the r and z coordinates, so the displacement and the coordinate
fields are given as

u = [ur uz]
T, x = [r z]T. (24)

Using the Vigot notation, r and �f are written as

r= [�rr �zz ��� �rz]
T, (25)

�f= [��rr ��zz ���� ��rz]
T. (26)

It follows that

�f= BI�uI, (27)

where

BI =
[ �NI

�r
0 NI

r
�NI

�z
0 �NI

�z
0 �NI

�r

]T

.

So we have

KT = Km + Kg + Ks (28)

where

(Km)IJ =
∑
e

[∫
be
BT
I DBJr dr dz

]
, (29a)

(Kg
ij)IJ =

∑
e

[∫
be

�NI

�xk
�kl

�NJ

�xl
r dr dz�ij

]
, (29b)

(Ks
ij)IJ =

∑
e

[∫
b̂ei

�0
dNI

dl
dNJ

dl
r dl�ij

−
∫
b̂ei

�0
dNI

dl
dxi
dl

dxj
dl

dNJ

dl
r dl

]
. (29c)

The resultant force R is

R =
∑
e

[∫
be
NTpr dr dz +

∫
b̂e0

NTtr dl −
∫
be
BTrr dr dz

−
∫
b̂ei

�0
dNT

dl
dx
dl

r dl

]
. (30)
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3. Analysis of InAs QD grown on GaAs (001) substrate

QDs have attracted much interest due to their special electronic
and optical properties these years [16–21]. Because of the difference
in the lattice parameters of the two materials, self-organized InAs
QD islands are grown epitaxially on GaAs (001) substrate. This is
the called Stranski–Krastanow (SK) growth mode, which consists of
two kinds of growth: firstly, layer-by-layer growth mode (i.e. FvdM
growth), and afterwards, 3D island growth (i.e. VW growth). The
phenomena happen because of the gain of the strain energy during
islanding, but at the cost of increased surface energy. Previous FEM
studies of QDs [15] didn't consider surface effects.

As shown in Fig. 1, a typical InAs QD shape can be modeled as a
2D conical axi-symmetric island. Four nodal, 2D solid, quadrilateral
elements are employed for the meshing. The nodes along the x = 0
and 30 lines are constrained in the x-direction. The system is as-
sumed isotropic because 2D strain calculations, taking into account
anisotropic behavior, show no significant effect. The isotropic ma-
terial properties and lattice parameters of GaAs and InAs are given
in Table 1. From Table 1, the lattice mismatch can be calculated as
�0 = (aGaAs − aInAs)/aInAs = −0.067.

Z

X

GaAs Substrate

InAs wetting layer

b=12nm

L=30nm

3
0
n
m

0
.
3
n
m

h
=
3
n
m

Fig. 1. 2D axi-symmetric conical QD model.

Table 1
Isotropic material properties and lattice parameters.

Material E (GPa) � Lattice parameter (Å)

GaAs 86.92 0.31 5.64325
InAs 51.42 0.35 6.05830

-6.90E+00
-6.28E+00
-5.65E+00
-5.02E+00
-4.39E+00
-3.77E+00
-3.14E+00
-2.51E+00
-1.88E+00
-1.13E+00

-7.53E+00

_________________S T R E S S xx(GPa)

Max = -1.13E+00
Min  = -7.53E+00

-7.87E+00
-7.16E+00
-6.44E+00
-5.73E+00
-5.01E+00
-4.29E+00
-3.58E+00
-2.86E+00
-2.15E+00
-1.43E+00

-8.59E+00

_________________S T R E S S xx(GPa)

Max = -1.43E+00
Min  = -8.59E+00

Fig. 2. The stress �xx distribution of QD island: (a) without considering surface effects and (b) with considering surface effects.

The island is bigger than 1000 atoms, so it can be well de-
scribed by continuum elasticity theory. In order to simulate the
system's intrinsic residual stress induced by the lattice mismatch,
we introduce the framework of thermo elasticity. Set the thermal
expansion coefficient �T of InAs and GaAs as 0.067 and zero, re-
spectively, and raise the temperature of the system by 1K. So the
thermal strain of InAs island is �T = �T�T = 0.067. Consider the
surface energy of the InAs island and set the surface stress con-
stant as �0 = 47meV/Å2 = 0.752N/m [16]. A `tied contact' condition
is specified on the interface edges between the QD island and the
GaAs (001) substrate. The stress (�xx, �zz) fields of QD island with
and without considering surface effects are shown in Figs. 2 and 3,
respectively.

4. Result and discussion

Taking note of the right color index value in Fig. 2, the QD island
is subjected to compressive stress �xx, and the minimum absolute
value of �xx is found at the apex of the island. That verifies that is-
landing happens to release strain elastic energy. With considering
surface effects, the minimum absolute value is increased from 1.13
to 1.43 (GPa) and the relative difference is about 27%. According to
the minimum potential energy theory, surface effects always trend
to contract surface area, and hinder the formation of island to re-
duce surface free energy. So, surface effects are contrary to the ef-
fects of islanding, and that leads to the increase of �xx. From Fig. 3,
we can also see the stress distributions of �zz are greatly affected
with considering surface effects, especially for the top area of island.
Comparing Figs. 3a and b, intensive compressive �zz is induced by
surface effects at the apex of island. That explains the formation of
truncated QD island which is frequently observed during QD growth.

In this paper, we incorporate surface effects into conventional
FEM, and develop a geometrically nonlinear FE model of nanomate-
rials. Analysis of InAs QD grown on GaAs (001) substrate is given
to demonstrate the surface effects on the stress fields of QD which
explains the formation of truncated QD during QD growth.
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-3.36E-01
-2.39E-01
-1.43E-01
-4.69E-02
4.94E-02
1.46E-01
2.42E-01
3.38E-01
4.34E-01
5.31E-01
6.27E-01
7.23E-01

-4.32E-01

_____________S T R E S S   zz(GPa)

Max =  7.23E-01
Min  = -4.32E-01

-3.93E-01
-2.95E-01
-1.98E-01
-1.00E-01
-2.51E-03
9.50E-02
1.93E-01
2.90E-01
3.88E-01
4.85E-01
5.83E-01
6.80E-01

-4.90E-01
Max =  6.80E-01
Min  = -4.90E-01

_____________ S T R E S S   zz(GPa) 

Fig. 3. The stress �zz distribution of QD island: (a) without considering surface effects and (b) with considering surface effects.
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